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Abstract 

Rishel et al have presented a preliminary study of stellar membership of the M56 globular cluster 

based on positions and proper motions of stars. As they admitted, the conclusion is not rigorously 

treated as the population of stars is small. Besides, he did not give the range of proper motions and 

positions for a member. In this article, I revisit the data and apply modern principal component 

analysis and machine learning algorithms to build a more precise model to predict the membership of 

the global cluster and apply the model to a larger size of data from Gaia collaboration. During the 

building of the model, parameters of principal component analysis and machine learning algorithms 

are compared and refined. The range of principal component to determine a member is illustrated by 

the boundary.  The effect of principal component analysis on the accuracy and efficiency of the model 

is verified. Finally, the result of members in M56 from Gaia collaboration is given by the model. 
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1 introduction 

 

1.1 background about globular cluster Messier 56 

 

The globular cluster Messier 56 (M56) was firstly discovered by Charles Messier on January 19, 1779. 

It is in the constellation Lyra and at about 32,900 light-years from Earth. Its combined mass 230,000 

times that of the Sun. It is around 31-32 kilolight-year from the Galactic Centre and 4.8 kilolight-year 

above the Galactic Centre. The age of M56 is estimated to be 13.70 billion years. The stars with the 

highest brightness in M56 are of 13 magnitudes. Because the last stages of stellar evolution for low-mass 

stars are most likely observed in globular clusters, it is essential to distinguish field stars projected onto 

the cluster and cluster members randomly.  For example, Rishel et al (1981) [1] have compiled a list of 

39 potential cluster stars in the field of M56, convolving relative proper motions with spatial information.   

Harris et al (1982) extend the work of Rishel et al (1981) and conclude that most radial-velocity cluster 

members are confined to the giant branch, and the most UV-bright stars with detected velocities are field 

stars. 

 

1.2 Motivations 

 

Although Rishel et al (1981) bring up a new criterion of convolving relative proper motions with spatial 

information to determine the member in M56, he admitted the conclusion is not rigorously treated as the 

population of stars is small. Besides, he did not give the specific range of proper motions and positions 

to determine a membership. Hence it would be helpful to build a model using modern algorithms and 

high-performance computers to extract the range of proper motions and positions from his prediction, 

and apply the model to the larger amount of data to verify the correctness of the criterion.  

In recent years, the emergence of machine learning and principal component analysis (PCA) has 

improved the efficiency and accuracy of solving classification problems. PCA is the most widely used 

feature extraction method. Machine learning is the field of study that trains a computer to learn without 

being explicitly programmed. PCA and machine learning are applicable to identify members of M56 

because of that PCA can be used to reduce the dimensionality of data, such as proper motions and spatial 

information to improve the efficiency of classification, and machine learning can solve the problem of 

classifying members with given training data. Typical algorithms of machine learning include support 

vector machines (SVM) and artificial neural networks (ANN). The former classifies objects by drawing 

boundaries and the latter classifies objects by using the weighted sum and the activation function. 

In this report, four types of data of stars in M56 are used to identify member stars of M56, which are x, 

y position (mm); individual proper motion in x and y. The data is collected from Rishel et al (1981) [1] 

and member stars for training are also collected from it.  Then PCA is applied to reduce the 

dimensionality of data to two. SVM and ANN are applied to train the model. During the procedure, the 
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effect of parameters in PCA and machine learning algorithms is tested. Finally, the model is applied to 

the latest data of stars in M56 from Gaia Collaboration (2018) [2]. The classification result is viewed 

both in plot and in text.  

 

1.3 Objectives  

 

The purpose of this project is to build a model using principal component analysis and machine learning 

algorithm and apply it to the larger amount of data in M56 to obtain members of globular cluster. During 

the project a few sub objectives need to be met： 

⚫ The data should be collected from Rishel et al [1] and Gaia collaboration [2] 

⚫ Parameters of the model should be adjusted to provide the best performance of the model 

⚫ The boundary of the model should be illustrated 

⚫ The accuracy of the model should be verified 

⚫ The effect of PCA on the model should be discovered 

⚫ The model should apply to the data from Gaia collaboration and generate a list of members 

1.4 Structure 

 

Following the introduction, Chapter 2 will introduce the background knowledge of terms being used in 

this project. Chapter 3 will display the process of the project, it shows the process of collecting and 

loading data, the adjustment of parameters for the model, illustrating the boundary of the model, verifying 

effect of principal component analysis, and applying the model to new data. Chapter 4 illustrates the 

result of process in chapter 3 with explanation to the result. Chapter 5 explains the limitation of the 

project, and the cause of the limitation. Chapter 6 evaluates the project with brief conclusion. 

 

2 Literature Review 

 

2.1 Principal component analysis 

 

Principal component analysis (PCA) is a mathematical algorithm that aims to reduce the data dimension 

while reserving most of the variation in the data set. Reduction is achieved by identifying directions, 

called principal components, where the variation in the data is maximal along directions. Each sample 

can be expressed by a few principal components instead of many variables. In the mathematical form, 

for a 𝑛 ×  𝑝 data matrix X with zero mean by columns, where each of the n rows represents an individual 

object and each of the p columns represents a type of feature. The one-dimensional principal component 

scores 𝑡(𝑖) = (𝑡1, . . .  𝑡𝑙)(𝑖)is given by: 
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𝑡𝑘(𝑖) = 𝑋(𝑖) ∙ 𝑊(𝑘)  𝑓𝑜𝑟  𝑖 = 1, . . . , 𝑛   𝑘 = 1, . . . , 𝑙      [1] 

Where 𝑊(𝑘) = (𝑤1, . . . , 𝑤𝑝)𝑘 is p dimensional vectors of weights. 

The first component is calculated by: 

𝑊(1) = 𝑎𝑟𝑔 𝑚𝑎𝑥{
𝑊𝑇𝑋𝑇𝑋𝑊

𝑊𝑇𝑊
}                    [2] 

The kth component is calculated by: 

𝑋⏞𝑘 = 𝑋 − ∑ 𝑋𝑊(𝑠)𝑊(𝑠)
𝑇𝑘−1

𝑠=1                    [3] 

𝑊(𝑘) = 𝑎𝑟𝑔 𝑚𝑎𝑥{
𝑊𝑇𝑋⏞𝑘

𝑇
𝑋⏞𝑘𝑊

𝑊𝑇𝑊
}            [4] 

The maximum values for the quantity in brackets are given by their corresponding eigenvalues 

 

2.2 Globular cluster 

 

Globular clusters are tight groups of million stars grasped together by their mutual gravitational attraction, 

with a nearly spherical distribution and high density in the centre. 

In a globular cluster, individual star motions are determined by the sum of the mass of all stars within 

the cluster. 

 

2.3 Field star 

 

A randomly located star that lies along the line of vision to a group of physically associated stars under 

study, such as a star cluster. Field stars are not connected with an astronomical object being learned. 

These field stars are necessary to identify to prevent contamination in the study 

 

2.4 Standard scalar 

 

Standard scalar is a tool to help with standardising a dataset which involves rescaling the distribution of 

values so that the mean of observed values is 0 and the standard deviation is 1. A value is standardized 

as follows:  

𝑦 = (𝑥 − 𝑚𝑒𝑎𝑛)/𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 

Where mean is calculated as: 

𝑚𝑒𝑎𝑛 = 𝑠𝑢𝑚(𝑥)/𝑐𝑜𝑢𝑛𝑡(𝑥) 

standard deviation is calculated as: 

     𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 = √∑
(𝑥−𝑚𝑒𝑎𝑛)2

𝑐𝑜𝑢𝑛𝑡(𝑥)−1
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2.5 Artificial neural network 

 

Artificial neural networks (ANNs) [3] are computational networks inspired by biology. Among the 

various types of ANNs, we focus on multilayer perceptron (MLPs) with back propagation learning 

algorithms [4]. MLPs which are mostly used for a wide variety of problems, are based on a supervised 

procedure and comprise three layers: input, hidden, and output. Its simplest form can be observed in 

Figure 1. 

 

 

Figure 1: structure of the neural network 

 

The output in layer 2 is computed by the weighted sum of the previous layer, see Equation 5, and the 

activation function, see Equation 6. 

       𝑍𝑗 = ∑ 𝜃𝑖𝑗𝑥𝑖
𝑛
𝑖=1          [5] 

Where Zj is the weighted sum and i is the number of the input and j is the number of the output. 

       𝑎𝑗 = ℎ(𝑍𝑗)         [6] 

Where aj is the jth output and h is the activation function. 

  

 

2.6 Support vector machine 

 

Support Vector Machine (SVM) is a supervised learning algorithm that analyzes data for classification 

and regression analysis [7]. It classifies the objects by constructing a hyperplane that has the largest 

distance to the nearest training data point of any category (functional margin). In other words, it aims to 

maximize the margin. Its illustration can be seen in Figure 2. 
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Figure 2: Illustration of SVM 

 

In Figure 2, there are two hyperplanes represented by Equation 7 and Equation 8. 

𝑊𝑇𝑋 + 𝑏 = 1                           [7] 

WTX + 𝑏 = −1        [8] 

Where W is the normal vector to the hyperplane. X is the p dimensional vector. 

The distance between two hyperplanes is 
2

|𝑤|
 . Hence maximizing margin equals minimizing www. The 

optimization of the problem can be represented by Equation 9. 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑖𝑛𝑔 |𝑤| 𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑠 𝑡𝑜 𝑦𝑖(𝑊𝑇𝑋 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑖 = 1, . . . , 𝑛                       [9] 

Where 𝑦𝑖  is the class for each point.  

It can be observed that W and b are only decided by X which lies nearest to the hyperplane. These X are 

called support vectors. 

 

  

3 Methodology  

 

 

The work is processed on python 3.8 with the assistance of the colab notebook. 

 

3.1 Data loading and processing 

 

Since the original data are typed from Rishel et al, it is necessary to load them into digital form for 

processing. Data loading is achieved using Excel. The full data can be seen in Appendix 1. It is necessary 

to notice that Rishel et al only label the stars in the inner four zones. To identify those stars. I firstly find 

the centre of data by minimizing the total distance from one star to other stars. Then stars are classified 

into zones due to their distance to the centre. Standard scalar is applied to the data for improving the 

applicability of the model. 
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3.2 Criterial establishment  

 

In the original data, there are six parameters included for each star. The x,y position(mm); S(microns), 

the std. deviation of the Gauss function describing the density of the stellar image, measuring stellar 

brightness; Proper motion in x and y in arcsecond per century. And the total weight. 

To identify the membership, only the x, y position and proper motion in x and y are needed. The other 2 

parameters are discarded. The central four zones are 0-5mm,5-7.07 mm, 7.07-8.66mm, and 8.66-10.00 

mm from the centre separately. 

 

3.3 Data Visualization 

Hence the data is four-dimensional, it is hard to represent it in a figure intuitively. I decide to plot the 

data with their spatial information: The x,y positions. The class of data points is separated by their colors. 

The blue color indicates it is not a cluster member and the red color indicates it is a cluster member.  The 

plot is done by pyplot, a collection of functions that draw the plot on python. 

 

3.4 Applying PCA to the sample 

 

PCA needs to be initialized before using it. Several parameters need to be set: the number of 

principal components, the type of kernel, gamma and C if necessary. I initialize three PCAs with 

different kernels [5] with corresponding parameters [6] to discover the effect of kernels. The first 

one uses a linear kernel. The second one uses an rbf kernel with gamma=0.04. The third one uses a 

sigmoid kernel with gamma=0.001, coef0=1. To visualize the difference more clearly, the scatter 

plot of the principal component is presented for each PCA. The PCA of best performance is chosen 

for the following project. 

 

3.5 Applying SVM to model and refining parameters 

 

SVM [7] also needs to be initialized before using. The kernel for SVM is the radial base function 

kernel. The critical parameters for it are gamma and  

C [8]. Four pairs of gamma and C are set: (0.1,0.001), (0.1,1000), (10,0.001), (10,1000). Each pair of 

parameters is used to initialize an SVM which is applied to two-dimensional principal components in Zone 

1 extracted from PCA. The performance of SVM is described by three scores: f1 score, precision score, 

and recall score [9]. The value of those scores is proportional to the performance of SVM. Plots of 

classified results using each parameter are also drawn to present the effect of parameters intuitively. 

Functions StratifiedShuffleSplit [10] and GridSearchCV() [11]  can be used exhaustive search over 
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specified parameter values for an estimator. The function is used to search the C in the log space of (-

2,10) and gamma in the log space of (-9,3) for an SVM applied in Zone 1. The performance is valued by 

validation accuracy, which describes how accurate the model is in the testing set. 

 

3.6 Testing model in other zones and retraining model 

 

The performance of the model training in Zone 1 can be observed by testing it in other zones. The process 

of testing is to enter principal components in other zones into the model and obtain the predicted class 

which is compared with the actual class. The performance is evaluated by the f1 score, precision score, 

and recall score. Plots of the classification are also drawn by pyplot.   

Then the model is retrained by the data in the inner four zones to improve the performance. Forty percent 

of the data is used as a training set and the other sixty percent is used as a testing set. Firstly, the model 

is fitted with a training set, then it is tested in a testing set to give the evaluation of the scores. The 

boundary of the model is also illustrated. 

 

3.7 Training model using ANN and verifying the effect of PCA 

 

ANN is applied to train the model. Python provides a package called MLPclassifier to build a 

multilayer perceptron classifier. Parameters of (hidden_layer_sizes=(50,), max_iter=100, alpha=1e-

4,solver='sgd', verbose=10, tol=1e-4, random_state=1,learning_rate_init=.1) are used to initialize 

the MLPclassifier.  The training set is forty percent of the data in the inner four zones, and the testing 

set is the other sixty percent of that. The performance is evaluated on the f1 score, precision score, 

and recall score. The code refers to J.McEwen et al [12]. 

The effect of PCA is verified by comparing the performance of ANN with PCA and that without PCA. 

The effect is verified from three perspectives: accuracy, efficiency, and loss function [13]. Accuracy is 

evaluated with training scores and testing scores. Efficiency is evaluated with time spent on processing 

the training. The loss function measures the absolute difference between the prediction and actual value, 

and it is presented with a plot. The time is calculated by a function called timeit. The parameters of the 

MLP classifier and the training and testing sets remain. 

An alternative option for ANN called Keras [14] is shown. Keras is connected by a two-dimensional 

input layer, a fully connected dense layer with 300 neurons, including a ReLU activation function, 

another fully connected dense layer with 100 neurons, including a ReLU and a final dense layer with 10 

neurons. The model is compiled by setting the loss function to sparse categorical cross-entropy with a 

stochastic gradient descent optimiser. The code refers to J.McEwen et al [15]. 

 

3.8 Applying model to new data 

 

The latest data of stars in M56 is collected from Gaia Collaboration [2], covering a range of 4 arcminutes 

around the centre of the cluster. The new data is processed with a standard scalar at first, to reduce the 

error from scales of arcminutes.  Then two-dimensional principal components are extracted from the data 

using PCA. Then those principal components are entered into a model trained by the data from Rishel et 
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al. The model gives a predicted class for each principal component. 

 

4 Result 

 

4.1 Visualization of data 

 

The data of M56 from Rishel et al are visualized according to their spatial information and class, without 

considering the proper motion. Each data point in Figure 3 represents a star, and the red color indicates 

it is a cluster membership while the blue color indicates it is not a cluster membership [1]. The centre of 

M56 is at (20.1255, 20.002499999999998). The visualization can be observed in Figure 3. 

 

 
Figure 3: Visualization of data with spatial information 

 

it can be observed membership stars are gathered in the central zone. 

 

4.2 Visualization of principal components 

 

The principal components for PCAs with multiple kernels and corresponding parameters can be observed 

in Figure 4. 
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Figure 4: Two-dimensional principal components using different kernels 

 

In the case of the sigmoid kernel, data points of member stars are mostly separated from the non-member 

stars. This is convenient for the separation. Hence, in the following part of the report, PCA with the 

sigmoid kernel, and gamma=0.001, coef0=1 is used. 

 

4.3 Visualization of SVM model and parameters refinement 

 

The boundary of Models trained with SVM in Zone 1 with four pair of parameters: (0.1,0.001), (0.1,1000), 

(10,0.001), (10,1000) is shown in Figure 5. 

 

 
Figure 5: SVM classification using different sets of parameters 
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The f1 score, precision score, and recall score of models in different parameters can be seen in Table 1. 

 

Table 1: The f1 score, precision score, and recall score of different parameters 

parameters F1 score Precision score Recall score 

(0.1,0.001) 0.31 0.23 0.5 

(0.1,1000) 0.94 0.94 0.94 

(10,0.001) 0.31 0.23 0.5 

(10,1000) 0.63 0.69 0.65 

 

Hence the parameter (0.1,1000) gives the best performance. For the following part of the report, the 

parameter of SVM is set to (0.1,1000). 

The plot of validation accuracy versus gamma and c can be seen in Figure 6. The orange block indicates 

the highest validation accuracy, and the red block is not presented in Figure 6 because accuracy with all 

parameters is above 0.5. 

 

 
Figure 6: The validation accuracy of different gamma and C 

 

The optimum parameter is {'C': 1000000.0, 'gamma': 100.0}. This pair parameter is not chosen for SVM 

because it is comparable slow for the training. 
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4.4 Testing SVM model and model retraining  

 

The f1 score, precision score, and recall score of the model in other zones can be observed in Table 2. 

The model performs best in Zone 2 and worst in Zone 3. 

 

Table 2:  The f1 score, precision score, and recall score of other zones 

parameters F1 score Precision score Recall score 

Zone 2 0.70 0.73 0.81 

Zone 3 0.53 0.57 0.67 

Zone 4 0.65 0.64 0.77 

 

The SVM model is retrained with the principal components in the inner four Zones. The f1 score, 

precision score, and recall score in the testing set can be observed in Table 3. The scores are around 0.7. 

 

Table 3: The f1 score, precision score and recall score in the testing set 

parameters F1 score Precision score Recall score 

Testing set 0.70 0.70 0.73 

 

The boundary of the classifier can be observed in Figure 7. The boundary gives the indication of criterion 

from Rishel et al to determine members in M56 convolving the proper motions and positions. 

 

 

Figure 7: visualization of the boundary in the inner 4 zones with principal components 

 

The model is applied to four Zones separately. The f1 score, precision score, and recall score in each 

zone can be observed in Table 4. The scores have been improved by increasing the size of the training 
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set. 

 

Table 4: f1 score, precision score, and recall score of four zones 

parameters F1 score Precision score Recall score 

Zone 1 0.69 0.70 0.69 

Zone 2 0.74 0.72 0.76 

Zone 3 0.65 0.64 0.76 

Zone 4 0.68 0.70 0.66 

 

4.5 Training model using ANN and verifying the effect of PCA 

 

The process and training set score and test set score can be observed in Figure 8, seeing appendix.  

The training scores of ANN and SVM are both 0.7 which means the accuracy of both training models 

agrees. 

The loss function of ANN models with PCA and without PCA can be observed in Figure 9. In the case 

of using PCA, the loss function starts at a lower value and decreases slower than that without using PCA. 

 

 
Figure 9: loss function of ANN models with PCA and without PCA 

 

The training score of ANN without PCA is 0.94 and the testing score of ANN without PCA is 0.91. The 

training score of ANN with PCA is 0.77 and the testing score of ANN without PCA is 0.70. By comparing 

the loss function and training score of ANN models with PCA and without PCA, it can be concluded that 

the ANN without PCA has better performance. Because in the procedure of PCA, part of the information 

is lost which reduces the accuracy of models during training. 
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The procedure of keras can be seen in Figure 10. 

 

 

Epoch 1/10 

3/3 [==============================] - 0s 84ms/step - loss: 0.6910 - accuracy: 0.6111 - val_loss: 0.6865 - val_accuracy: 0.7083 

Epoch 2/10 

3/3 [==============================] - 0s 20ms/step - loss: 0.6836 - accuracy: 0.7500 - val_loss: 0.6799 - val_accuracy: 0.7083 

Epoch 3/10 

3/3 [==============================] - 0s 25ms/step - loss: 0.6757 - accuracy: 0.7500 - val_loss: 0.6745 - val_accuracy: 0.7083 

Epoch 4/10 

3/3 [==============================] - 0s 24ms/step - loss: 0.6692 - accuracy: 0.7500 - val_loss: 0.6699 - val_accuracy: 0.7083 

Epoch 5/10 

3/3 [==============================] - 0s 17ms/step - loss: 0.6637 - accuracy: 0.7500 - val_loss: 0.6655 - val_accuracy: 0.7083 

Epoch 6/10 

3/3 [==============================] - 0s 15ms/step - loss: 0.6582 - accuracy: 0.7500 - val_loss: 0.6606 - val_accuracy: 0.7083 

Epoch 7/10 

3/3 [==============================] - 0s 16ms/step - loss: 0.6523 - accuracy: 0.7500 - val_loss: 0.6567 - val_accuracy: 0.7083 

Epoch 8/10 

3/3 [==============================] - 0s 24ms/step - loss: 0.6476 - accuracy: 0.7500 - val_loss: 0.6530 - val_accuracy: 0.7083 

Epoch 9/10 

3/3 [==============================] - 0s 14ms/step - loss: 0.6426 - accuracy: 0.7500 - val_loss: 0.6482 - val_accuracy: 0.7083 

Epoch 10/10 

3/3 [==============================] - 0s 20ms/step - loss: 0.6366 - accuracy: 0.7500 - val_loss: 0.6444 - val_accuracy: 0.7083 

Figure 10: The procedure of keras 

 

The accuracy is of Keras 0.7, the same as the result of the ANN model and SVM model. 

Running times for MLP with PCA and without PCA are shown in Table.5. 

 

Table.5: Running times for MLP with PCA and without PCA 

 MLP with PCA MLP without PCA 

Running time 0.10742 0.1584 

 

The result obtained from Table.5 shows that in two dimensions, it saves 30% of running time by applying 

PCA, which is a considerable large resource saving. 

It can be concluded that PCA saves 30% of running time at the cost of 23% of accuracy. It hints that in 

the situation where a large amount of data needs to be processed, and the resource is limited, PCA is a 

useful way to save resources. While if the resources are sufficient, PCA can harm the accuracy to a certain 

extent. 

 

4.6 Application of model in latest data of M56 

 

The principal components of data from Rishel et al [1] with labels are shown in Figure 11. The principal 

components of data from Gaia Collection with labels are shown in Figure 12. 
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Figure 11: The principal components of data from Rishel et al [1] 

 

 

Figure 12: The principal components of data from Gaia Collaboration [2] 

 

The decision boundary in the data of Gaia Collaboration is more distinctive than that in Rishel et al. This 

is because of that SVM tends to give a continuous boundary that separates the classes. There are 1117 

stars classified as a member of the cluster out of the total number of 6677 in the data set of Gaia 
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collaboration. And in that of Rishel et al, the ratio is 39 out of 141. Ratios between cluster members and 

non-cluster members are close in two data sets. 

the detail of the predicted class for data from Gaia Collaboration n is saved in a .txt file, see appendix. 

 

5 Limitation 

 

The study is built on the assumption that the prediction of Rishel et al is correct. Hence, the error in the 

prediction can propagate to the model. Besides, Gaia Collaboration does not provide the label of a star 

which determines if a star is a cluster member. It is hard to examine the accuracy of predicted labels with 

actual labels. 

 

6 Conclusion 

 

In this report, I apply the Principal Component Analysis to extract the principal components of stars in 

the M56 globular cluster from Rishel et al. Models are then obtained by applying the support vector 

machine algorithm and artificial neural network to the principal components. The boundary obtained 

from model gives the indication of criterion that Rishel et al used to determine the member of M56. The 

effect of PCA is also discovered. It saves 30% of running time at the cost of 23% of accuracy. Finally, 

the model using SVM is applied to the latest data of M56 from Gaia, and the prediction for each star is 

obtained. This study builds the models to identify the cluster star with statistical theory, instead of 

astronomical theory. It improves the speed of the classification for cluster members in M56 and provides 

an example for relative study in the future. While for the absence of actual labels in M56, it is hard to 

examinate to the accuracy of models.  

 

7 Appendix 

 

The repository is in jimmylihui/project: using PCA to analyse star clustering (github.com) 

The code can be visited via project/Project.ipynb at main · jimmylihui/project (github.com) 

The prediction result can be visited via project/prediction (1).txt at main · jimmylihui/project (github.com) 

The old data of stars can be visited via project/data.txt at main · jimmylihui/project (github.com) 

The new data of stars can be visited via project/project.xlsx at main · jimmylihui/project (github.com) 

The process and training set score and test set score of ANN model is shown below: 

Iteration 1, loss = 0.78737483 

Iteration 2, loss = 0.71462950 

Iteration 3, loss = 0.63926102 

Iteration 4, loss = 0.57773329 

Iteration 5, loss = 0.53649459 

Iteration 6, loss = 0.51345862 

Iteration 7, loss = 0.50369027 

Iteration 8, loss = 0.50114044 

Iteration 9, loss = 0.50071396 

Iteration 10, loss = 0.49902095 

Iteration 11, loss = 0.49457787 

Iteration 12, loss = 0.48689036 

https://github.com/jimmylihui/project
https://github.com/jimmylihui/project/blob/main/Project.ipynb
https://github.com/jimmylihui/project/blob/main/prediction%20(1).txt
https://github.com/jimmylihui/project/blob/main/data.txt
https://github.com/jimmylihui/project/blob/main/project.xlsx
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Iteration 13, loss = 0.47630837 

Iteration 14, loss = 0.46395359 

Iteration 15, loss = 0.45147626 

Iteration 16, loss = 0.43998364 

Iteration 17, loss = 0.43003711 

Iteration 18, loss = 0.42186854 

Iteration 19, loss = 0.41525004 

Iteration 20, loss = 0.40960656 

Iteration 21, loss = 0.40485390 

Iteration 22, loss = 0.40041454 

Iteration 23, loss = 0.39619572 

Iteration 24, loss = 0.39188157 

Iteration 25, loss = 0.38769475 

Iteration 26, loss = 0.38345967 

Iteration 27, loss = 0.37935452 

Iteration 28, loss = 0.37535805 

Iteration 29, loss = 0.37148938 

Iteration 30, loss = 0.36793397 

Iteration 31, loss = 0.36472934 

Iteration 32, loss = 0.36181626 

Iteration 33, loss = 0.35914757 

Iteration 34, loss = 0.35675461 

Iteration 35, loss = 0.35449883 

Iteration 36, loss = 0.35241063 

Iteration 37, loss = 0.35050924 

Iteration 38, loss = 0.34869246 

Iteration 39, loss = 0.34696095 

Iteration 40, loss = 0.34528314 

Iteration 41, loss = 0.34365505 

Iteration 42, loss = 0.34211623 

Iteration 43, loss = 0.34064530 

Iteration 44, loss = 0.33923201 

Iteration 45, loss = 0.33783583 

Iteration 46, loss = 0.33649448 

Iteration 47, loss = 0.33521634 

Iteration 48, loss = 0.33398655 

Iteration 49, loss = 0.33282242 

Iteration 50, loss = 0.33173672 

Iteration 51, loss = 0.33065602 

Iteration 52, loss = 0.32958844 

Iteration 53, loss = 0.32856467 

Iteration 54, loss = 0.32756794 

Iteration 55, loss = 0.32655629 

Iteration 56, loss = 0.32556942 
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Iteration 57, loss = 0.32461613 

Iteration 58, loss = 0.32369815 

Iteration 59, loss = 0.32275721 

Iteration 60, loss = 0.32183393 

Iteration 61, loss = 0.32091872 

Iteration 62, loss = 0.32001603 

Iteration 63, loss = 0.31913988 

Iteration 64, loss = 0.31829419 

Iteration 65, loss = 0.31746466 

Iteration 66, loss = 0.31665960 

Iteration 67, loss = 0.31600665 

Iteration 68, loss = 0.31536527 

Iteration 69, loss = 0.31472878 

Iteration 70, loss = 0.31409671 

Iteration 71, loss = 0.31346945 

Iteration 72, loss = 0.31285541 

Iteration 73, loss = 0.31224808 

Iteration 74, loss = 0.31164181 

Iteration 75, loss = 0.31105066 

Iteration 76, loss = 0.31046816 

Iteration 77, loss = 0.30992570 

Iteration 78, loss = 0.30940892 

Iteration 79, loss = 0.30889937 

Iteration 80, loss = 0.30839504 

Iteration 81, loss = 0.30789833 

Iteration 82, loss = 0.30742066 

Iteration 83, loss = 0.30695688 

Iteration 84, loss = 0.30649691 

Iteration 85, loss = 0.30602814 

Iteration 86, loss = 0.30557616 

Iteration 87, loss = 0.30514205 

Iteration 88, loss = 0.30473120 

Iteration 89, loss = 0.30432322 

Iteration 90, loss = 0.30392562 

Iteration 91, loss = 0.30352575 

Iteration 92, loss = 0.30313822 

Iteration 93, loss = 0.30280193 

Iteration 94, loss = 0.30241525 

Iteration 95, loss = 0.30206376 

Iteration 96, loss = 0.30172296 

Iteration 97, loss = 0.30137572 

Iteration 98, loss = 0.30103058 

Iteration 99, loss = 0.30071109 

Iteration 100, loss = 0.30038086 
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Training set score: 0.824561 

Test set score: 0.758621 
Figure 8: The process and training set score and test set score of the ANN model 
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